3.178 \(\int \sqrt{a+b \text{sech}^2(x)} \tanh ^3(x) \, dx\)

Optimal. Leaf size=59 \[ \frac{\left (a+b \text{sech}^2(x)\right )^{3/2}}{3 b}-\sqrt{a+b \text{sech}^2(x)}+\sqrt{a} \tanh ^{-1}\left (\frac{\sqrt{a+b \text{sech}^2(x)}}{\sqrt{a}}\right ) \]

[Out]

Sqrt[a]*ArcTanh[Sqrt[a + b*Sech[x]^2]/Sqrt[a]] - Sqrt[a + b*Sech[x]^2] + (a + b*Sech[x]^2)^(3/2)/(3*b)

________________________________________________________________________________________

Rubi [A]  time = 0.106641, antiderivative size = 59, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 17, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.353, Rules used = {4139, 446, 80, 50, 63, 208} \[ \frac{\left (a+b \text{sech}^2(x)\right )^{3/2}}{3 b}-\sqrt{a+b \text{sech}^2(x)}+\sqrt{a} \tanh ^{-1}\left (\frac{\sqrt{a+b \text{sech}^2(x)}}{\sqrt{a}}\right ) \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b*Sech[x]^2]*Tanh[x]^3,x]

[Out]

Sqrt[a]*ArcTanh[Sqrt[a + b*Sech[x]^2]/Sqrt[a]] - Sqrt[a + b*Sech[x]^2] + (a + b*Sech[x]^2)^(3/2)/(3*b)

Rule 4139

Int[((a_) + (b_.)*((c_.)*sec[(e_.) + (f_.)*(x_)])^(n_))^(p_.)*tan[(e_.) + (f_.)*(x_)]^(m_.), x_Symbol] :> With
[{ff = FreeFactors[Sec[e + f*x], x]}, Dist[1/f, Subst[Int[((-1 + ff^2*x^2)^((m - 1)/2)*(a + b*(c*ff*x)^n)^p)/x
, x], x, Sec[e + f*x]/ff], x]] /; FreeQ[{a, b, c, e, f, n, p}, x] && IntegerQ[(m - 1)/2] && (GtQ[m, 0] || EqQ[
n, 2] || EqQ[n, 4] || IGtQ[p, 0] || IntegersQ[2*n, p])

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 80

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(c + d*x)
^(n + 1)*(e + f*x)^(p + 1))/(d*f*(n + p + 2)), x] + Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(
d*f*(n + p + 2)), Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 2,
0]

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \sqrt{a+b \text{sech}^2(x)} \tanh ^3(x) \, dx &=\operatorname{Subst}\left (\int \frac{\left (-1+x^2\right ) \sqrt{a+b x^2}}{x} \, dx,x,\text{sech}(x)\right )\\ &=\frac{1}{2} \operatorname{Subst}\left (\int \frac{(-1+x) \sqrt{a+b x}}{x} \, dx,x,\text{sech}^2(x)\right )\\ &=\frac{\left (a+b \text{sech}^2(x)\right )^{3/2}}{3 b}-\frac{1}{2} \operatorname{Subst}\left (\int \frac{\sqrt{a+b x}}{x} \, dx,x,\text{sech}^2(x)\right )\\ &=-\sqrt{a+b \text{sech}^2(x)}+\frac{\left (a+b \text{sech}^2(x)\right )^{3/2}}{3 b}-\frac{1}{2} a \operatorname{Subst}\left (\int \frac{1}{x \sqrt{a+b x}} \, dx,x,\text{sech}^2(x)\right )\\ &=-\sqrt{a+b \text{sech}^2(x)}+\frac{\left (a+b \text{sech}^2(x)\right )^{3/2}}{3 b}-\frac{a \operatorname{Subst}\left (\int \frac{1}{-\frac{a}{b}+\frac{x^2}{b}} \, dx,x,\sqrt{a+b \text{sech}^2(x)}\right )}{b}\\ &=\sqrt{a} \tanh ^{-1}\left (\frac{\sqrt{a+b \text{sech}^2(x)}}{\sqrt{a}}\right )-\sqrt{a+b \text{sech}^2(x)}+\frac{\left (a+b \text{sech}^2(x)\right )^{3/2}}{3 b}\\ \end{align*}

Mathematica [A]  time = 0.373467, size = 90, normalized size = 1.53 \[ \frac{1}{3} \cosh (x) \sqrt{a+b \text{sech}^2(x)} \left (\left (\frac{a}{b}-3\right ) \text{sech}(x)+\frac{3 \sqrt{2} \sqrt{a} \log \left (\sqrt{a \cosh (2 x)+a+2 b}+\sqrt{2} \sqrt{a} \cosh (x)\right )}{\sqrt{a \cosh (2 x)+a+2 b}}+\text{sech}^3(x)\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + b*Sech[x]^2]*Tanh[x]^3,x]

[Out]

(Cosh[x]*Sqrt[a + b*Sech[x]^2]*((3*Sqrt[2]*Sqrt[a]*Log[Sqrt[2]*Sqrt[a]*Cosh[x] + Sqrt[a + 2*b + a*Cosh[2*x]]])
/Sqrt[a + 2*b + a*Cosh[2*x]] + (-3 + a/b)*Sech[x] + Sech[x]^3))/3

________________________________________________________________________________________

Maple [F]  time = 0.112, size = 0, normalized size = 0. \begin{align*} \int \sqrt{a+b \left ({\rm sech} \left (x\right ) \right ) ^{2}} \left ( \tanh \left ( x \right ) \right ) ^{3}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*sech(x)^2)^(1/2)*tanh(x)^3,x)

[Out]

int((a+b*sech(x)^2)^(1/2)*tanh(x)^3,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{b \operatorname{sech}\left (x\right )^{2} + a} \tanh \left (x\right )^{3}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sech(x)^2)^(1/2)*tanh(x)^3,x, algorithm="maxima")

[Out]

integrate(sqrt(b*sech(x)^2 + a)*tanh(x)^3, x)

________________________________________________________________________________________

Fricas [B]  time = 3.26579, size = 7024, normalized size = 119.05 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sech(x)^2)^(1/2)*tanh(x)^3,x, algorithm="fricas")

[Out]

[1/12*(3*(b*cosh(x)^6 + 6*b*cosh(x)*sinh(x)^5 + b*sinh(x)^6 + 3*b*cosh(x)^4 + 3*(5*b*cosh(x)^2 + b)*sinh(x)^4
+ 4*(5*b*cosh(x)^3 + 3*b*cosh(x))*sinh(x)^3 + 3*b*cosh(x)^2 + 3*(5*b*cosh(x)^4 + 6*b*cosh(x)^2 + b)*sinh(x)^2
+ 6*(b*cosh(x)^5 + 2*b*cosh(x)^3 + b*cosh(x))*sinh(x) + b)*sqrt(a)*log(((a^3 + 2*a^2*b + a*b^2)*cosh(x)^8 + 8*
(a^3 + 2*a^2*b + a*b^2)*cosh(x)*sinh(x)^7 + (a^3 + 2*a^2*b + a*b^2)*sinh(x)^8 + 2*(2*a^3 + 5*a^2*b + 4*a*b^2 +
 b^3)*cosh(x)^6 + 2*(2*a^3 + 5*a^2*b + 4*a*b^2 + b^3 + 14*(a^3 + 2*a^2*b + a*b^2)*cosh(x)^2)*sinh(x)^6 + 4*(14
*(a^3 + 2*a^2*b + a*b^2)*cosh(x)^3 + 3*(2*a^3 + 5*a^2*b + 4*a*b^2 + b^3)*cosh(x))*sinh(x)^5 + (6*a^3 + 14*a^2*
b + 9*a*b^2)*cosh(x)^4 + (70*(a^3 + 2*a^2*b + a*b^2)*cosh(x)^4 + 6*a^3 + 14*a^2*b + 9*a*b^2 + 30*(2*a^3 + 5*a^
2*b + 4*a*b^2 + b^3)*cosh(x)^2)*sinh(x)^4 + 4*(14*(a^3 + 2*a^2*b + a*b^2)*cosh(x)^5 + 10*(2*a^3 + 5*a^2*b + 4*
a*b^2 + b^3)*cosh(x)^3 + (6*a^3 + 14*a^2*b + 9*a*b^2)*cosh(x))*sinh(x)^3 + a^3 + 2*(2*a^3 + 3*a^2*b)*cosh(x)^2
 + 2*(14*(a^3 + 2*a^2*b + a*b^2)*cosh(x)^6 + 15*(2*a^3 + 5*a^2*b + 4*a*b^2 + b^3)*cosh(x)^4 + 2*a^3 + 3*a^2*b
+ 3*(6*a^3 + 14*a^2*b + 9*a*b^2)*cosh(x)^2)*sinh(x)^2 + sqrt(2)*((a^2 + 2*a*b + b^2)*cosh(x)^6 + 6*(a^2 + 2*a*
b + b^2)*cosh(x)*sinh(x)^5 + (a^2 + 2*a*b + b^2)*sinh(x)^6 + 3*(a^2 + 2*a*b + b^2)*cosh(x)^4 + 3*(5*(a^2 + 2*a
*b + b^2)*cosh(x)^2 + a^2 + 2*a*b + b^2)*sinh(x)^4 + 4*(5*(a^2 + 2*a*b + b^2)*cosh(x)^3 + 3*(a^2 + 2*a*b + b^2
)*cosh(x))*sinh(x)^3 + (3*a^2 + 4*a*b)*cosh(x)^2 + (15*(a^2 + 2*a*b + b^2)*cosh(x)^4 + 18*(a^2 + 2*a*b + b^2)*
cosh(x)^2 + 3*a^2 + 4*a*b)*sinh(x)^2 + a^2 + 2*(3*(a^2 + 2*a*b + b^2)*cosh(x)^5 + 6*(a^2 + 2*a*b + b^2)*cosh(x
)^3 + (3*a^2 + 4*a*b)*cosh(x))*sinh(x))*sqrt(a)*sqrt((a*cosh(x)^2 + a*sinh(x)^2 + a + 2*b)/(cosh(x)^2 - 2*cosh
(x)*sinh(x) + sinh(x)^2)) + 4*(2*(a^3 + 2*a^2*b + a*b^2)*cosh(x)^7 + 3*(2*a^3 + 5*a^2*b + 4*a*b^2 + b^3)*cosh(
x)^5 + (6*a^3 + 14*a^2*b + 9*a*b^2)*cosh(x)^3 + (2*a^3 + 3*a^2*b)*cosh(x))*sinh(x))/(cosh(x)^6 + 6*cosh(x)^5*s
inh(x) + 15*cosh(x)^4*sinh(x)^2 + 20*cosh(x)^3*sinh(x)^3 + 15*cosh(x)^2*sinh(x)^4 + 6*cosh(x)*sinh(x)^5 + sinh
(x)^6)) + 3*(b*cosh(x)^6 + 6*b*cosh(x)*sinh(x)^5 + b*sinh(x)^6 + 3*b*cosh(x)^4 + 3*(5*b*cosh(x)^2 + b)*sinh(x)
^4 + 4*(5*b*cosh(x)^3 + 3*b*cosh(x))*sinh(x)^3 + 3*b*cosh(x)^2 + 3*(5*b*cosh(x)^4 + 6*b*cosh(x)^2 + b)*sinh(x)
^2 + 6*(b*cosh(x)^5 + 2*b*cosh(x)^3 + b*cosh(x))*sinh(x) + b)*sqrt(a)*log(-(a*cosh(x)^4 + 4*a*cosh(x)*sinh(x)^
3 + a*sinh(x)^4 + 2*b*cosh(x)^2 + 2*(3*a*cosh(x)^2 + b)*sinh(x)^2 + sqrt(2)*(cosh(x)^2 + 2*cosh(x)*sinh(x) + s
inh(x)^2 - 1)*sqrt(a)*sqrt((a*cosh(x)^2 + a*sinh(x)^2 + a + 2*b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2))
+ 4*(a*cosh(x)^3 + b*cosh(x))*sinh(x) + a)/(cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2)) + 4*sqrt(2)*((a - 3*b)
*cosh(x)^4 + 4*(a - 3*b)*cosh(x)*sinh(x)^3 + (a - 3*b)*sinh(x)^4 + 2*(a - b)*cosh(x)^2 + 2*(3*(a - 3*b)*cosh(x
)^2 + a - b)*sinh(x)^2 + 4*((a - 3*b)*cosh(x)^3 + (a - b)*cosh(x))*sinh(x) + a - 3*b)*sqrt((a*cosh(x)^2 + a*si
nh(x)^2 + a + 2*b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2)))/(b*cosh(x)^6 + 6*b*cosh(x)*sinh(x)^5 + b*sinh
(x)^6 + 3*b*cosh(x)^4 + 3*(5*b*cosh(x)^2 + b)*sinh(x)^4 + 4*(5*b*cosh(x)^3 + 3*b*cosh(x))*sinh(x)^3 + 3*b*cosh
(x)^2 + 3*(5*b*cosh(x)^4 + 6*b*cosh(x)^2 + b)*sinh(x)^2 + 6*(b*cosh(x)^5 + 2*b*cosh(x)^3 + b*cosh(x))*sinh(x)
+ b), -1/6*(3*(b*cosh(x)^6 + 6*b*cosh(x)*sinh(x)^5 + b*sinh(x)^6 + 3*b*cosh(x)^4 + 3*(5*b*cosh(x)^2 + b)*sinh(
x)^4 + 4*(5*b*cosh(x)^3 + 3*b*cosh(x))*sinh(x)^3 + 3*b*cosh(x)^2 + 3*(5*b*cosh(x)^4 + 6*b*cosh(x)^2 + b)*sinh(
x)^2 + 6*(b*cosh(x)^5 + 2*b*cosh(x)^3 + b*cosh(x))*sinh(x) + b)*sqrt(-a)*arctan(sqrt(2)*((a + b)*cosh(x)^2 + 2
*(a + b)*cosh(x)*sinh(x) + (a + b)*sinh(x)^2 + a)*sqrt(-a)*sqrt((a*cosh(x)^2 + a*sinh(x)^2 + a + 2*b)/(cosh(x)
^2 - 2*cosh(x)*sinh(x) + sinh(x)^2))/((a^2 + a*b)*cosh(x)^4 + 4*(a^2 + a*b)*cosh(x)*sinh(x)^3 + (a^2 + a*b)*si
nh(x)^4 + (2*a^2 + 3*a*b)*cosh(x)^2 + (6*(a^2 + a*b)*cosh(x)^2 + 2*a^2 + 3*a*b)*sinh(x)^2 + a^2 + 2*(2*(a^2 +
a*b)*cosh(x)^3 + (2*a^2 + 3*a*b)*cosh(x))*sinh(x))) + 3*(b*cosh(x)^6 + 6*b*cosh(x)*sinh(x)^5 + b*sinh(x)^6 + 3
*b*cosh(x)^4 + 3*(5*b*cosh(x)^2 + b)*sinh(x)^4 + 4*(5*b*cosh(x)^3 + 3*b*cosh(x))*sinh(x)^3 + 3*b*cosh(x)^2 + 3
*(5*b*cosh(x)^4 + 6*b*cosh(x)^2 + b)*sinh(x)^2 + 6*(b*cosh(x)^5 + 2*b*cosh(x)^3 + b*cosh(x))*sinh(x) + b)*sqrt
(-a)*arctan(sqrt(2)*(cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2 - 1)*sqrt(-a)*sqrt((a*cosh(x)^2 + a*sinh(x)^2 +
 a + 2*b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2))/(a*cosh(x)^4 + 4*a*cosh(x)*sinh(x)^3 + a*sinh(x)^4 + 2*
(a + 2*b)*cosh(x)^2 + 2*(3*a*cosh(x)^2 + a + 2*b)*sinh(x)^2 + 4*(a*cosh(x)^3 + (a + 2*b)*cosh(x))*sinh(x) + a)
) - 2*sqrt(2)*((a - 3*b)*cosh(x)^4 + 4*(a - 3*b)*cosh(x)*sinh(x)^3 + (a - 3*b)*sinh(x)^4 + 2*(a - b)*cosh(x)^2
 + 2*(3*(a - 3*b)*cosh(x)^2 + a - b)*sinh(x)^2 + 4*((a - 3*b)*cosh(x)^3 + (a - b)*cosh(x))*sinh(x) + a - 3*b)*
sqrt((a*cosh(x)^2 + a*sinh(x)^2 + a + 2*b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2)))/(b*cosh(x)^6 + 6*b*co
sh(x)*sinh(x)^5 + b*sinh(x)^6 + 3*b*cosh(x)^4 + 3*(5*b*cosh(x)^2 + b)*sinh(x)^4 + 4*(5*b*cosh(x)^3 + 3*b*cosh(
x))*sinh(x)^3 + 3*b*cosh(x)^2 + 3*(5*b*cosh(x)^4 + 6*b*cosh(x)^2 + b)*sinh(x)^2 + 6*(b*cosh(x)^5 + 2*b*cosh(x)
^3 + b*cosh(x))*sinh(x) + b)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{a + b \operatorname{sech}^{2}{\left (x \right )}} \tanh ^{3}{\left (x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sech(x)**2)**(1/2)*tanh(x)**3,x)

[Out]

Integral(sqrt(a + b*sech(x)**2)*tanh(x)**3, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{b \operatorname{sech}\left (x\right )^{2} + a} \tanh \left (x\right )^{3}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sech(x)^2)^(1/2)*tanh(x)^3,x, algorithm="giac")

[Out]

integrate(sqrt(b*sech(x)^2 + a)*tanh(x)^3, x)